696 research outputs found

    Structural, Electronic, and Vibrational Properties of Amino-adamantane and Rimantadine Isomers

    Full text link
    We performed a first principles total energy investigation on the structural, electronic, and vibrational properties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimantadine isomers with the functional groups bonded to different carbon sites. By comparing our results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples

    Crystal engineering using functionalized adamantane

    Full text link
    We performed a first principles investigation on the structural, electronic, and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zincblende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ\kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electro-mechanical systems

    Functionalized adamantane: fundamental building blocks for nanostructure self-assembly

    Full text link
    We report first principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic bandgap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed

    Differential effects of biological invasions on coastal blue carbon: A global review and meta‐analysis

    Get PDF
    Human‐caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats—collectively known as “blue carbon” and coastal vegetated habitats (CVHs) —are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem‐based management of these systems. In a global meta‐analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat‐level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invaded CVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C‐forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C‐rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter‐directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta‐analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems

    Haemophilic factors produced by transgenic livestock: abundance that can enable alternative therapies worldwide

    Get PDF
    Haemophilia replacement factors, both plasma-derived and recombinant, are in relatively short supply and are high-cost products. This has stymied the study and development of alternative methods of administration of haemophilia therapy even in the most economically advanced countries, owing to the large amounts of material needed because bioabsorption and bioavailability of haemophilic factors can be less than 10% when using non-intravenous routes of delivery. There is therefore a need to increase access to therapy worldwide by decreasing the cost and increasing the abundance so that therapy can be achieved through simplified, alternative delivery methods. Transgenic livestock have been used to produce haemophilic factors in milk. Only the pig mammary gland has been shown to carry out the post-translational processing necessary to enable both the biological activity and long circulation half-life needed for therapeutic glycoproteins. Furthermore, the large amounts of recombinant protein that can be produced from pig milk make feasible the use of alternative delivery methods such as oral, intratracheal, subcutaneous, and intramuscular administration

    Affinity Purification of Biologically Active andInactive Forms of Recombinant Human Protein C Produced in Porcine Mammary Gland

    Get PDF
    Recombinant human protein C (rhPC) secreted in the milk of transgenic pigs was studied. \u27Ikansgenes having different regulatory elements of the murine milk protein, whey acidic protein, were used with cDNA and genomic human protein C (hPC) DNA sequences to obtain lower and higher expressing animals. The cDNA pigs had a range of expression of about 0.1-0.5 g/l milk. Two different genomic hPC pig lines have expressed 0.3 and 1-2 g/l, respectively. The rhPC was first purified at yields greater than 60 per cent using a monoclonal antibody (mAb) to the activation site on the heavy chain of hPC. Subsequent immunopurification with a calcium-dependent mAb directed to the y-carboxyglutamic acid domain of the light chain of hPC was used to fractionate a population having a higher specific anticoagulant activity in vW. The higher percentages of Ca2+-dependent conformers isolated from the total rhPC by immunopurification correlated well with higher specific activity and lower expression. A rate limitation in y-carboxylation of rhPC was clearly identified for the higher expressing animals. Thus, transgenic animals with high expression levels of complex recombinant proteins produced a lower percentage of biologically active protein
    corecore